#### THYROID GOITER









Assoc. prof. V. Marković, MD, PhD Assoc. prof. A. Punda, MD, PhD S. Gračan, MD, nucl. med. spec.



#### THYROID GOITER



#### Diffuse goiter



Nodular goiter



Multinodular (polynodose)goiter





#### UNINODULAR GOITER

#### DIFFUSE GOITER



#### MULTINODULAR GOITER

#### **Goiter – World Health Organisation Division (WHO)**

- Grade 0: No goiter: hardly palpable and visible (or unpalpabile or unvisible)
- **Grade IA**: clearly palpable, but unvisible with neck extension
- Grade IB: clearly palpable and visible with complete neck extension (head thrown). This grade involves nodular goiter, even if the thyroid itself isn't enlarged
- Grade II: clearly visible when the head is in normal position (palpation isn't neccessry for diagnosis)
- Grade III: thyroid seen from the distance (palpation isn't neccesery for diagnosis)

#### **Revised goiter division**

Grade 0 Thyroid not enlarged by inspection or palpation

Grade 1 Goiter palpable, but not seen when head and neck are in normal position (thyroid isn't enlarged visualy). This category includes nodules in normal sized thyroid

Grade 2 Thyroid visible when head is in normal position, and palpatory enlarged

WHO, UNICEF, and ICCIDD. 2001. Assessment of the Iodine Deficiency Disorders and monitoring their elimination. Geneva: WHO publ. WHO/NHD/01.1. 1-107 pp.

## What is a nodule?

- Inspection: thyroid thickening, asimetry.
- Palpation: part of the thyroid with different consistency.
- Ultrasonography: tumor of different echostructure or separated echostructure inside the thyroid.

• Scintigram: tumor of different function.

## THYROID NODULES

- The most common thyroid disease (frequency 20-50%)
- Important clinical problem (thyroid cancer ~ 5%)

## THE MOST COMMON CAUSES FOR THYROID NODULES

#### Benigne

- Folliculare adenoma
  - Macrofolliculare adenoma
  - Microfolliculare (fetale)
  - Trabecullare
  - Hürthle cell
- Multinodular goiter
- Cysts (colloid and hemorrhagic)
- Thyroiditis Hashimoto

## THE MOST COMMON CAUSES FOR THYROID NODULES

#### Malignant

- Papillary and follicular carcinoma.
- Medullar carcinoma.
- Poorly differenciated and anaplastic carcinoma.
- Primary thyroid lymphoma.
- Metastatic carcinoma: melanoma, brest carcinoma and kidney carcinoma

#### **Prevalence of thyroid nodules**

- 1. \* around 5% (3%–8%) by palpation
- **2**. \* 10 76% **by ultrasonography**
- **3. \* 50% by patohistologic findings in autopsy in older people** (Mortensen et al.J Clin Endocrinol Metab; 1955)
- \* Increase with age
- \* More often in women

## DIFFERENTIAL DIAGNOSIS OF THYROID NODES

• 42-77% colloid nodes

• 15-40% adenomas

• 8-17% carcinomas

Mazzaferri EL. N Engl J Med 1993; 328:553-559.

## THYROID NODULE'S INCIDENCE (by palpation)

 Incidence of palpable nodes (in areas with iodine deficit)

- ~ 5% in female
- ~ 1% in men

## THYROID NODULE'S INCIDENCE (by palpation)

| State                   | Nodule incidence                                             | Author                  |
|-------------------------|--------------------------------------------------------------|-------------------------|
| SAD<br>(Salt Lake City) | <b>2.3%</b> (young adults)<br><b>0.46%</b> (school children) | Rallison ML,<br>1991    |
| England<br>(Whickham)   | 3.2%                                                         | Turnbridge WMG,<br>1977 |
| SAD<br>(Massachusets)   | 4.2%                                                         | Vander JB,<br>1968      |
| Italy<br>(Sicily)       | 5.1%                                                         | Belfiore A,<br>1987     |
| Denmark                 | <b>6.5%</b><br>(middle age women)                            | Christensen SB,<br>1984 |

## THYROID NODULE'S INCIDENCE (by ultrasonography)

| State                | Nodule<br>incidence                             | Author                       |
|----------------------|-------------------------------------------------|------------------------------|
| SAD (Stanford)       | 13.4%                                           | Caroll et al.; 1982          |
| Japan (Tokushima)    | 19.7%                                           | Miki et al.; 1993            |
| Finland (Hyvinkaa)   | 21.3%                                           | Brander et al.; 1991         |
| Germany              | <b>23.4%</b> (18-65 years)                      | Reiners et al.; 2004         |
| Italy (Pescopagano)  | <b>28.5%</b> (56-65 years)                      | Aghini-Lombardi et al.; 1999 |
| Danmark (Copenhagen) | <b>32%</b> (41-71 years)                        | Knudsen et al.; 2000         |
| Italy (Palermo)      | 33%                                             | Bartolotta et al.; 2006      |
| SAD (San Francisco)  | <b>40%</b> (patients with hyperparathyroidisam) | Stark et al.; 1983           |
| SAD                  | 46%                                             | Horlocker et al.; 1985       |

## THYROID NODULE'S INCIDENCE (by autopsy)

| State      | Nodule incidence                                                       | Author                                    |
|------------|------------------------------------------------------------------------|-------------------------------------------|
| SAD        | <b>13%</b> (solders age 18-39 years)                                   | Oertel, Klinck<br>1965                    |
| Hungary    | 27.1% suficient iodine<br>intake<br>44.6% insuficient iodine<br>intake | Kovacs et al.<br>2005                     |
| SAD        | 50.5%                                                                  | Mortensen JD et al.<br>1955 (Mayo clinic) |
| Belarussia | 60%                                                                    | Furmanchuk et al.<br>1993                 |

## DIAGNOSIS AND TREATMENT OF PATIENTS WITH THYROID NODES

- Inspection and palpation
- TSH serum level
- Ultrasonography of the thyroid
- Thyroid scintigraphy (<sup>99m</sup>TcO<sub>4</sub><sup>-</sup>, <sup>123</sup>I, <sup>131</sup>I)
- Fine needle aspiration citology and Tg and Ct in aspirate
- RTG, CT, MR

#### Inspection and palpation



## ULTRASONOGRAPHY

- Introduced in 1967. by Fujimoto as thyroid imaging method
- The most precise method for detection of thyroid nodes
- Detection of nodes larger then 2 mm
- Mandatory in palpable nodes.
- Ultrasound guided fine needle aspiration.

## **NODUIAR CHANGES:** Number, size, echostructure, position in the thyroid

- 1. Cysts and cystic degenerative noduleses
- 2. Single nodul isoechogenic,hypoechogenic, degenerativly changed(benigne goiter)
- 3. Multinodular (polynodular) goiter
- 4. Nodul in lymphatic goiter









#### 5. tumors- adenomas, cancers













#### Ca. papillare









### Ca. papillare











Panoramic US image, coronal section: solitary nodule in the right lobe



#### **Echographic criterion of malignancy**

Hypoechogenic

#### Microcalcification

Abscense of hypoechogenic edge, irregular

borders

Intranodular vascularisation

\* <mark>\*\*</mark>\$•

Regional lymphadenopathy



## Flow grades in CD (Color Doppler)









\*Color Doppler can help to determine which nodules require FNAC





#### **Reactive lymph node**

#### Metastatic lymph node

## Scintigraphy



Scintigraphic "cold" node



#### Scintigraphic "hot" node





Scintigraphic "cold" node

Scintigraphic "warm" node

## Ultrasound guided fine needle aspiration citology (FNAC)



#### CARCINOMA RISK IN THE NODULE

~5% solitary nodule

~5% nodes in multinodular goiter



~5% small unpalpable nodes detected by ultrasound

### CARCINOMA RISK IN THE NODULE

#### Risk factors:

- Age < 20 years.
- children < 14 years around 50% nodes are cancer
- Male gender (2 times more often)
- Scintigraphic nonfunctional "cold" nodes
- Quick growth of the nodule
- Nodes > 4 cm



# Clinical findings sugesting thyroid carcinoma:

- 1. Quick growth of the nodul,
- 2. Hard and irregular by palpation,
- 3. Vocal cord paralysis,
- 4. Enlarged neck lymph nodes,
- 5. Family history for medullary carcinoma,
- 6. Distant metastasis.



Scintigraphicly "warm" or "hot" nodules (Autonomously functioning thyroid nodule-AFTN) have very low malignancy risk (0,2-0,5%),

Fine needle aspiration citology is indicated only in those nodules with clinicaly (quick grow, hard consistency) and ultrasound characteristics suspected for malignacy

#### Importance of thyroid nodule detection

- \* Most of the patients don't have any simptoms
- \* Most are euthyroid
- \* Some patients have palpable nodule, neck pressure or other discomfort
- \* For thyroid carcinoma detection (5% of all nodes)
- \* Carcinoma risk is similar in solitar nodules and inside multinodular goiter
- Cancer are found equally in small and large nodes
- Microcancer can be agressive
- Aim of diagnostic procedure is to reduce number of unnessesery operations of benigne thyroid diseases and early diagnosis of malignant tumors
## Microcarcinoma < 1 cm

- Thanks to ultrasound significant number of detected thyroid cancers today are less then 1 cm in diameter
- Occult microcarcinomas can be found as source of neck lymphnode metastasis or distant metastasis
- Incidental papillary microcarcinomas are detected as patohistological finding in thyroid tissue after surgery for other reasons
- Latent microcarcinomas which are incidental finding in autopsy

## Goiter

 endemic goiter: more then 5 % of habitants or shchool children have goiter.
sporadic goiter: diffuse and nodular (multinodular) goiter.

Endemic stands for expansion in the population, because clinical manifestation, patohistological finding and biochemical parameters are same in endemic and sporadic goiter.







## **Endemic goiter**

## **Endemic goiter**





# Endemic cretinism



### Croatia-1950.

- 2 000 000 people with goiter
- frequency 10 90 %
- 20 000 endemic cretinism
- **2 4 000 deaf-mute**
- male to female children with ratio was 1:1

Home of the family with goiter, Rude, 1950'



## Cretin's destiny was closely related with their mother's life...

#### Cretin and his mother



### **IODINE PROPHYLAXIS IN CROATIA**

- 1930. 1941. sporadic iodine prophylaxis
- **1953.** First low about mandatory table salt iodination

### 10 mg KI/kg NaCl

• Ten years later three times reduction in goiter frequency in Croatia with loss of cretinism

In the begining of the 1990's goiter freqency in Croatia was 8%-35%



### 1996.

### MILD TO MODERATE IODINE DEFICIENCE IN SPITE SALT IODINATION WITH 10 mg KI/kg NaCI

## 1996. NEW LEGISLATION ABOUT SALT IODINATION 25 mg KI/kg NaCl

### **RESULTS:**

### Thyroid volumes measured in four main geographic regions were within normal range for school children who recive sufficient amount of iodine



Goiter frequency in four main regions in Croatia, % above upper borders – USG, 2002.

### WHO/ICCIDD, 2001

### THYROID VOLUME, age 13, 1991.

ZAGREB\_\_\_\_\_7,2 mL

STOCKHOLM\_\_\_\_4 mL

MÜNCHEN\_\_\_\_\_9 mL

THYROID VOLUME, age 12, 2002.

ZAGREB\_\_\_\_\_\_ 4,8 mL

| lodine intake in Europe, based on the iodine urine<br>excretion (μg/L) |                     |                               |                            |  |
|------------------------------------------------------------------------|---------------------|-------------------------------|----------------------------|--|
| Satisfactory<br>(≥100 µg/L)                                            | Probably sufficient | unsatisfactory<br>(<100 µg/L) | Probably<br>unsatisfactory |  |
| Austria                                                                | Island              | Belgium                       | Albania                    |  |
| Bosna and Hercegovina                                                  | Luxemburg           | Denmark                       |                            |  |
| Croatia                                                                | Norway              | France                        |                            |  |
| Cyprus                                                                 | Sweden              | Germany                       |                            |  |
| Czech Republic                                                         |                     | Greek                         |                            |  |
| Finland                                                                |                     | Hungary                       |                            |  |
| Macedonia                                                              |                     | Italy                         |                            |  |
| Netherlands                                                            |                     | Irland                        |                            |  |
| Poland                                                                 |                     | Montenegro                    |                            |  |
| Portugal                                                               |                     | Romania                       |                            |  |
| Slovakia                                                               |                     | Slovenia                      |                            |  |
| Srbia                                                                  |                     | Spain                         |                            |  |
| Switzerland                                                            |                     | Turky                         |                            |  |
| United Kingdom                                                         |                     |                               |                            |  |

Lancet, 2003; 361: 1226

### **Recommended daily intake of iodine**

- 90 µg for preschool children (0 to 59 months) ;
- 120 µg for schoolchildren (6 to 12 years);
- 150 µg for adults (above 12 years) ; and
- 200 250µg for pregnant and lactating women

From WHO/UNICEF/ICCIDD (2), WHO

| Epidemiological criteria for assessing iodine nutrition based on<br>median urinary iodine concentrations in school-aged children<br>Median urinary iodine Iodine intake(µg/L) Iodine nutrition |                    |                                                                                                                            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| < 20                                                                                                                                                                                           | Insufficient       | Severe iodine deficiency                                                                                                   |  |  |
| 20-49                                                                                                                                                                                          | Insufficient       | Moderate iodine deficiency                                                                                                 |  |  |
| 50-99                                                                                                                                                                                          | Insufficient       | Mild iodine deficiency                                                                                                     |  |  |
| 100-199                                                                                                                                                                                        | Adequate           | Optimal                                                                                                                    |  |  |
| 200-299                                                                                                                                                                                        | More than adequate | Risk of iodine-induced<br>hyperthyroidism within<br>5-10 years following<br>introduction of<br>iodized salt in susceptible |  |  |
| > 300                                                                                                                                                                                          | Excessive          | Risk of adverse health<br>consequences<br>(iodine-induced hyperthyroidism,<br>autoimmune thyroid diseases)                 |  |  |

WHO, UNICEF, and ICCIDD. 2001. Assessment of the Iodine Deficiency Disorders and monitoring their elimination. Geneva: WHO publ. WHO/NHD/01.1. 1-107 pp.

# The natural course of multinodular goiter's development

- Gradual growth of the goiter and nodules.
- Development of multiple nodes with age.
- Variation in size and architecture of the nodes.
- Appearance of cysts, fibrosis, necrosis, hemorrhage, calcifications.
- Variable growth flow possible longtime phases of inaction.
- Appearance of autonomic nodes with TSH supression transit to multinodular toxic goiter (common form of hyperthyroidism in insuffitient iodine intake).

## **Clinical manifestation**

- Asimptomatic small goiter
- Large multinodular, retrosternal or intrathoracic goiter with symptoms of compression: in 10-20% patients
  - Dysphagia
  - Dyspnea
  - Dysphonia
  - Stridor
  - Pemberton's sign
  - Syndroma Horner
- Pain (nodule hemorrhage)
- Thyreotoxic symptoms



## Frequency of multinodular goiter

- High frequency in areas with iodine deficit (endemic goiter) up to 30%.
- Eradication of endemic goiter in countries which implemented mandatory iodine prophylaxis.
- In areas with sufficient iodine intake goiter frequency is around 4% (sporadic goiter).
- Increase of thyroid nodule frequency with age

### Causes of nontoxic goiter

- 1. lodine deficit (compensatory thyroid enlargement)
- 2. Strumogenic substance (tiocionats, thyreostatic preparations, lithium, different vegatables)
- 3. Enzymatic disorders

### Multinodular goiter: Clinical problem

1. Compression

2. Hyperthyroidism, hypothyroidism

3. Malignancy

## **Dioagnostic treatment**

- Inspection and palpation
- TSH
- Thyroid ultrasonography
- Thyroid scinitgraphy
- Fine needle aspiration citology
- RTG, CT, MR, SPECT





## TSH

- Inversly relationship between goiter size and serum TSH level.
- Longtime goiter development of autonomic nodes with TSH suprresion.
- Suppressed TSH: determination of FT3, FT4.
- Antibodies.

## Thyroid ultrasonography

- Nodule frequency (US):
  - Up to 50 % population has multiple noduls which aren't palpable
  - Up to 50% persons with single palpable nodule have multiple nodes registrated on ultrasound
- Ultrasound guided fine needle aspiration citology
- Objective follow up of goiter and nodule size



Multinodular goiter: multiple nodes in the thyroid



Multinodular goiter: panoramic US image, cross section, multiple nodes in the thyroid



Multinodular goiter: panoramic US image, cross section, enlarged thyroid with multiple nodes

## Fine needle aspiration citology (FNAC)

- Indicated in:
  - fast growing goiter with dominant nodule
  - clinicaly suspected nodes
  - ultrasound suspected nodes
  - unpalpable nodes larger then 1 cm guided by ultrasound (4-6% malignant)
- Risk for carcinoma development in nodes smaller then 1 cm is same as in large nodes - around 5%
- Not routinely indicated

## **Thyroid scintigraphy**



Multinodular goiter Scintigraphy with <sup>99m</sup> Tcpertechnetate



Multinodular toxic goiter Scintigraphy with <sup>131</sup>I

### Intrathoracic goiter-planar scintigraphy with I-131-



### Pemberton's sign





## **Radiological examinations**

- X-ray of thorax
- X-ray of trachea and esophagus
- CT
- MR



- Indications:
- large multinodular goiter
- retrosternal goiter
- intrathoracic goiter





### X-ray of the trachea and neck soft tissue

- deviation and/or compression of the trachae, tracheomalatia
- thyroid calcification





### Planar scintigraphy with I-131intrathoracic goiter








SPECT/CT

Patient ID: 0206201103111952 Study Name: Thyroid Scan Series Time: 10:05:41

Series Date: 02-Jun-2011



#### SPECT/CT

Patient ID: 0206201103111952 Study Name: Thyroid Scan Series Time: 10:05:41

Series Date: 02-Jun-2011



### **CT, MR** Ectopic- intratracheal thyroid



# Clinical problem: Carcinoma in multinodular goiter

- 4 17% cancer are found in the surgicly removed multinodular goiters.
- 4 24% thyroids on the autopsy have carcinoma.
- Incidentaly found unpalpable nodes have 4-6% cancer on US guided fine needle aspiration.
- Higher risk:
  - in patient who had head and neck area radiated during childhood.

#### **Cancer problem**

- Up to 5% nodes have carcinoma regardless whether they are solitar nodul or multinodular thyroid
- 4% of population have solitar nodule (40 000 per 1 000 000)
- 4% persons with nodule have carcinoma (1600 per 40 000)
- 1 600 cancers per 1 000 000 habitants
- 30 60 cancers a year per 1 000 000 habitants
- 6 patients die per 1 000 000 habitants
- Clinical treatment of dominant and/or suspected nodes in multinodular goiter

# **Treatment of multinodular goiter**

- There is no simple or optimal therapy individual approach
- Follow up without therapy
- Surgery
- Radioiodine therapy
- Suppression therapy with thyroxine
- Percutane injection of ethanol
- Laser therapy

## Surgical treatment of multinodular goiter

- Indications:
  - Carcinoma finding by FNAC
  - Goiter and nodes growth with symptoms of compresion
  - Cosmetic large goiter
  - Hyperthyroidism
- Therapy of choice in young patients
- Subtotal thyroidectomia
- Near total or total thyroidectomia (relapse in up to 60%)

#### Therapy with I-131

#### • Indications:

 Scintigraphic "hot" nodes – multinodular toxic goiter or just suppressed TSH, especially in elderly patients

- malignant tumor excluded
- large and/or retrosternal goiter
- older patients with increased risk for surgery especially cardiopaths

#### Radioiodine therapy of euthyroid goiter

- 40% reduction in goiter size during the first year, and 60% reduction during 3–5 years period
- Weaker effect in large goiters
- Recombinant hTSH.
- Significantly more effective and easier to endure in regard to suppression therapy with thyroxine
- No significant side-effects (hypothyroidism).
- No increase in cancer risk in patients treated with <sup>131</sup>I.

# **Thyroxine suppression therapy**

- Possible reduction of small non-toxic multinodular goiter
- Not indicated with suppressed TSH.
- Individual access (not recomended in cardiopaths and older patients).
- Relapse after discontinuation of therapy.

# Follow up witout therapy

- Goiter stable for many years.
- Cytology: benigne.
- Ultrasound follow up of goiter and nodule's size every 6 -12 months with TSH level follow up.
- In case of growth of eather goiter or nodes and/or appearance of suspected nodes repeat FNAC.
- In case of appearance of TSH suppression: determine FT3, FT4 and do the thyroid scintigraphy.





